SkySuite: A Framework of Skyline-Join Operators for Static and Stream Environments
نویسندگان
چکیده
Efficient processing of skyline queries has been an area of growing interest over both static and stream environments. Most existing static and streaming techniques assume that the skyline query is applied to a single data source. Unfortunately, this is not true in many applications in which, due to the complexity of the schema, the skyline query may involve attributes belonging to multiple data sources. Recently, in the context of static environments, various hybrid skyline-join algorithms have been proposed. However, these algorithms suffer from several drawbacks: they often need to scan the data sources exhaustively in order to obtain the set of skyline-join results; moreover, the pruning techniques employed to eliminate the tuples are largely based on expensive pairwise tuple-to-tuple comparisons. On the other hand, most existing streaming methods focus on single stream skyline analysis, thus rendering these techniques unsuitable for applications that require a real-time “join” operation to be carried out before the skyline query can be answered. Based on these observations, we introduce and propose to demonstrate SkySuite: a framework of skyline-join operators that can be leveraged to efficiently process skyline-join queries over both static and stream environments. Among others, SkySuite includes (1) a novel Skyline-Sensitive Join (SSJ) operator that effectively processes skyline-join queries in static environments, and (2) a Layered Skyline-window-Join (LSJ) operator that incrementally maintains skyline-join results over stream environments.
منابع مشابه
A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملAdaptive Processing of Multi-Criteria Decision Support Queries
Business intelligence applications ranging from stock market tickers to strategic supply chain adaptation systems require the efficient support of multi-criteria decision support (MCDS) queries. Skyline queries are a popular class of MCDS queries that have received a lot of attention recently. However, a vast majority of skyline algorithms focus entirely on the input being a single data set. In...
متن کاملRelaxed Queries over Data Streams
Relaxation skyline queries have been proposed, in the relational context, as a solution to the so-called empty answer problem. Given a query composed of selection and join operations, a relaxation skyline query relies on the usage of a relaxation function (usually, a numeric function) to quantify the distance of each tuple (pair of tuples in case of join) from the specified conditions and uses ...
متن کاملSkyline Evaluation Within Join Operation, Block Nested Loop Join Implementation
Skyline Join approach in its Naïve age work as it computes join first and then apply skyline computation to find corresponding skyline objects. Considering increase in cardinality and dimensionality of join table the cost of computing skyline in a non-reductive join relation is costlier than that of on single table. Most of the existing work on skyline queries for databases mainly discusses the...
متن کاملFinding Group-Based Skyline over a Data Stream in the Sensor Network
Along with the application of the sensor network, there will be large amount of dynamic data coming from sensors. How to dig the useful information from such data is significant. Skyline query is aiming to identify the interesting points from a large dataset. The group-based skyline query is to find the outstanding Pareto Optimal groups which cannot be g-dominated by any other groups with the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PVLDB
دوره 6 شماره
صفحات -
تاریخ انتشار 2013